EQUILATERAL SETS IN UNIFORMLY SMOOTH BANACH SPACES
نویسندگان
چکیده
منابع مشابه
GENERALIZED CO - COMPLEMENTARITY PROBLEMS IN p - UNIFORMLY SMOOTH BANACH SPACES
The objective of this paper is to study the iterative solutions of a class of generalized co-complementarity problems in p-uniformly smooth Banach spaces, with the devotion of sunny retraction mapping, p-strongly accretive, p-relaxed accretive and Lipschitzian (or more generally uniformly continuous) mappings. Our results are new and represents a significant improvement of previously known resu...
متن کامل$r$-fuzzy regular semi open sets in smooth topological spaces
In this paper, we introduce and study the concept of $r$-fuzzy regular semi open (closed) sets in smooth topological spaces. By using $r$-fuzzy regular semi open (closed) sets, we define a new fuzzy closure operator namely $r$-fuzzy regular semi interior (closure) operator. Also, we introduce fuzzy regular semi continuous and fuzzy regular semi irresolute mappings. Moreover, we investigate the ...
متن کاملUniformly convex Banach spaces are reflexive - constructively
We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the MilmanPettis theorem that uniformly convex Banach spaces are reflexive. Our aim in this note is to present a fully constructive analysis of the Milman-Pettis theorem [11, 12, 9, 13]: a uniformly convex Banach space is reflexive. First, t...
متن کاملUniformly Convex Functions on Banach Spaces
We study the connection between uniformly convex functions f : X → R bounded above by ‖ · ‖p, and the existence of norms on X with moduli of convexity of power type. In particular, we show that there exists a uniformly convex function f : X → R bounded above by ‖ · ‖2 if and only if X admits an equivalent norm with modulus of convexity of power type 2.
متن کاملSome results on functionally convex sets in real Banach spaces
We use of two notions functionally convex (briefly, F--convex) and functionally closed (briefly, F--closed) in functional analysis and obtain more results. We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$, then $bigcup_{alphain I}A_{alpha}$ is F--convex. Moreover, we introduce new definition o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematika
سال: 2014
ISSN: 0025-5793,2041-7942
DOI: 10.1112/s0025579313000260